

Multicomponent force plate

Type 9287C...

Large – for dynamic applications in biomechanics, F_z –10 ... 20 kN

Multicomponent force plate with wide range for measuring ground reaction forces, moments and the center of pressure in biomechanics.

- Extremely wide measuring range
- · Excellent measuring accuracy
- High natural frequency
- Versatile
- Threshold F_z <250 mN
- · Large dimensions

The multicomponent force plate Type 9287C... consists of a 900x600 mm aluminum sandwich top plate of advanced, lightweight construction and four built-in piezoelectric 3-component force sensors. Thus it is extremely rigid overall, and allows measurements over a very wide useful frequency range.

Thanks to the special properties of the piezoelectric sensors, the force plate is highly sensitive and can simultaneously measure very dynamic phenomena involved in a wide range of applications.

Application

This force plate is designed specifically for use in basic research and sport. Its large size, wide measuring range and high rigidity allow it to be employed for a very wide spectrum of measuring tasks and application sectors. Despite the very generous measuring range of -10 ... 20 kN, it offers excellent accuracy and linearity and even under a large preload allows precise measurement of minute forces. In all these situations the force plate can be mounted in any position without affecting the measurement result in any way.

The Type 9287CA has an built-in charge amplifier compatible with all of the common motion analysis systems.

Technical data

Dimensions		mm	900x600x100
Measuring range	F_x , F_y	kN	-10 10
	F_z	kN	-10 20
Overload	F _x , F _y	kN	-13/13
	F_z	kN	-10/25
Linearity		%FSO	<±0.2
Hysteresis		%FSO	<0.3
Crosstalk	$F_x < -> F_y$	%	<±1.5
	F_x , $F_y \rightarrow F_z$	%	<±1.5
	$F_z \rightarrow F_x$, F_y	%	<±0.5 ¹⁾
Rigidity	x -axis ($a_y = 0$)	N/µm	≈150
	y-axis $(a_x = 0)$	N/µm	≈200
	z-axis $(a_x = a_y = 0)$	N/µm	≈30
Natural frequency	f _n (x, y)	Hz	≈750
	f _n (z)	Hz	≈520
Operating temperature range		°C	0 60
Weight		kg	25
Degree of protection	EN 60529:1992		IP65

Force plate without charge amplifier, Type 9287C

Calibrated range	F _x , F _y	kN	0 10
	F_z	kN	0 20
Calibrated partial range	F _x , F _y	kN	0 1
	Fz	kN	0 2
Threshold	F _x , F _y , F _z	mN	<50
Sensitivity	F _x , F _y	pC/N	-7.5 ²⁾
	F_z	pC/N	-3.8 ²⁾

inside sensor rectangle

²⁾ nominal value

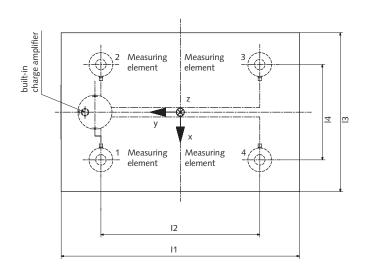
Force plate with built-in 8 channel charge amplifier, Type 9287CA

Calibrated range	F _x , F _y	kN	0 5
	F_z	kN	0 20
Calibrated partial range	F _x , F _y	kN	0 1.25
	F_z	kN	0 5
Sensitivity range 1	F _x , F _y	mV/N	≈40 ²⁾
	F_z	mV/N	≈18 ²⁾
Sensitivity range 4	F _x , F _y	mV/N	≈2.0 ²⁾
	F_z	mV/N	≈0.9 ²⁾
Ratio ranges 1:2:3:4			1:5:10:20 ³⁾
Threshold		mN	<250 ⁴⁾
Drift		mN/s	<±10
Supply voltage		VDC	10 30
Supply current		mA	≈45

Output voltage	V	0 ±5
Output current	mA	-2 2
Control inputs (optocoupler)	V	5 45
	mA	0.4 4.4

²⁾ nominal value

Conforms to the CE safety standards (73/23/EG) for electrical equipment and systems:


EN 60601-1:2005, EN 61010-1:2001

and the EMC standards (89/336/EG):

EN 60601-1:2005 (EN 55022 Class B), EN 61000-6-3:2004

(EN 55022 Class B), EN 61000-6-4:2001 (EN 55011 Class B), EN 60601-1:2005, EN 61000-6-1:2001, EN 61000-6-2:2005

Dimensions

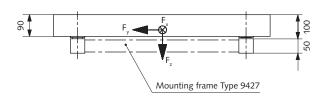


Fig. 1: Dimensions of the large multicomponent force plate Type 9287CA

Тур	I1	12	13	14
9287CA	900	700	600	420
9287CAQ01	1200	700	600	420
9287CAQ02	900	700	900	700

^{3) ±0.5 %} accuracy

⁴⁾ only range 1

measure. analyze. innovate.

BioWare

BioWare software is the engine behind the force plate system. It collects data from the force plates, converts the trials into useful information and plots the results. The force plates and charge amplifiers are fully remote controlled by BioWare thus making the system extremely flexible and easy-to-use.

Parameters of Gait

Fig. 2: Ground reaction forces (GRF)

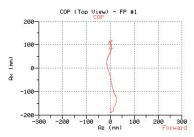


Fig. 3: Center of pressure (COP)

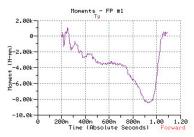


Fig. 4: Frictional torque Tz

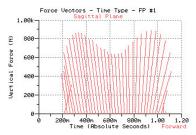


Fig. 5: Force vector

Other functions

- Coefficient of friction (COF)
- Frequency analysis, statistics, digital filters
- Full Windows functionality

BioWare provides several performance specific evaluations.

Parameters of Countermovement Jump CMJ

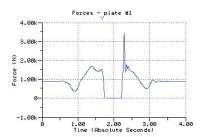


Fig. 6: Jump force

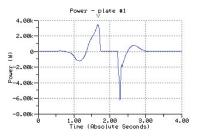


Fig. 7: Power

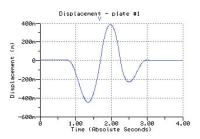
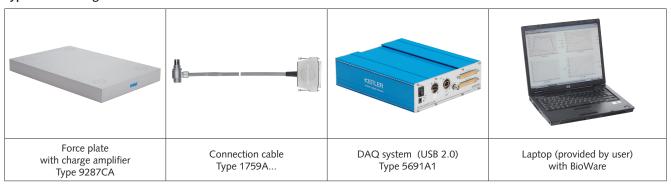


Fig. 8: Jump height (COM)



Fig. 9: Force gradient (Explosivity)


Other parameters

- Acceleration, velocity and displacement of the center of mass (COM)
- Work, energy, impulse
- · Statistics, digital filters

Page 3/4

Typical measuring chains

Configuration of a typical measuring chain

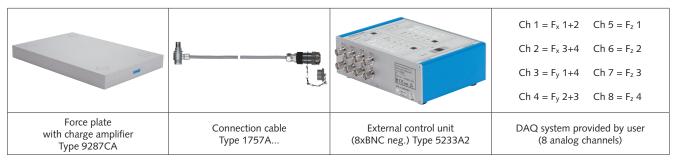
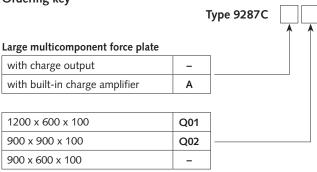


Fig. 11: Configuration of a typical measuring chain


Included accessories	Type/Art. No.	Mounting frame for Type 9287C	0.407
For Type 9287C		 Standard mounting frame 	9427
• 1 Shim set	7.050.011	 Other mounting frames for multiple 	
 4 Eye bolts M6 with 	6.170.007	installations	on request
washers	6.220.040	 Standard mounting frame for 	
• 4 Hexagon socket head cap screws M12x25	6.120.106	9287C and 9287CAQ01	9427
 1 Hexagon socket wrench 	1391	 Standard mounting frame for 9287CAQ02 	Z20342
 1 Voltage equalizing cable 	5.590.175		
 4 Installation handles 	7.511.437		

Optional accessories	Type/Art. No.	
For Type 9287CA with built-in charge		
amplifier		
• 16ch DAQ-System for BioWare (USB 2.0)	5691A1	
 Connection cable for 5691A, angle plug 	1759A	

• 16ch DAQ-System for BioWare (USB 2.0)	5691A1
 Connection cable for 5691A, angle plug 	1759A
• 64ch DAQ-System for BioWare (USB 2.0)	5695B1
 Connection cable for 5695B, angle plug 	1700A105A
 External control unit (BNC out) 	5233A2
 Connection cable for Type 5233A 	1757A
 DAQ system BioWare (PCI-Bus) 	2812A

For Type 9287C with charge output				
External charge amplifier	9865E			
 Connection cable, angle plug 	1686A			
 DAQ system BioWare (PCI-Bus) 	2812A			

Ordering key

Windows is a registered trade mark of Microsoft Corporation BioWare is a registered trade mark of Kistler Holding AG

This information corresponds to the current state of knowledge. Kistler reserves the right to make technical changes. Liability for consequential damage resulting from the use of Kistler products is excluded.

©2008 ... 2021 Kistler Group, Eulachstraße 22, 8408 Winterthur, Switzerland Tel. +41522241111, info@kistler.com, www.kistler.com. Kistler Group products are protected by various intellectual property rights. For more details visit www.kistler.com.

Page 4/4